首页> 外文OA文献 >Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions
【2h】

Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

机译:欧洲14CO2观测网络通过大气反演估算化石燃料CO2排放的潜力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Combining measurements of atmospheric CO and its radiocarbon (CO) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO emitted from fossil fuel (FFCO). In this study, we solve for the monthly FFCO emission budgets at regional scale (i.e. the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75° × 2.5° resolution. We conduct Observing System Simulation Experiments (OSSE) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as “posterior uncertainty”, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions which are used as a prior knowledge by the inversion (called “prior uncertainty”). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic “true” emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring CO across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 CO measurement stations planned in Europe, the uncertainty reduction for monthly FFCO emissions is increased for UK, France, Italy, Eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improve the uncertainty reduction (up to 40 % to 70 %) in high emitting regions, but the performance of the inversion remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and the posterior estimate of emissions itself, for a given prior and “true” estimate of the emissions, are highly sensitive to the choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviate significantly from the truth. This highlights the difficulty to filter the targeted signal in the model-data misfit for this specific inversion framework, the need to strongly rely on the prior uncertainty characterization for this, and, consequently the need for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO, showing that increasing the monitoring period (e.g. more than 20 years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural CO fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability of the actual fluxes and mixing ratios at sub-grid scales), which is a key limitation of our OSSE setup to improve the accuracy of the monitoring of FFCO emissions in European regions. Using a high-resolution transport model should improve the potential to retrieve FFCO emissions, and this needs to be investigated.
机译:结合大气CO及其放射性碳(CO)分数的测量以及大气反演中的输运模型,提供了一种方法,可以得出化石燃料(FFCO)排放的CO的改进估算值。在这项研究中,我们解决了区域规模(即欧洲中型国家的规模)的每月FFCO排放预算,并研究了欧洲不同观测网络和采样策略的性能。该反演系统建立在LMDZv4全球运输模型上,分辨率为3.75°××2.5°。我们进行观测系统模拟实验(OSSE),并使用两种类型的诊断程序来评估观测和逆建模框架的潜力。第一个依据是反演排放估算中不确定性的理论计算,即所谓的“后验不确定性”;与这些排放清单中的不确定性相比,不确定性降低了,后者被用作先验知识。反演(称为“先验不确定性”)。第二种方法是基于将排放量与合成“真实”排放量的先验和后验估算值进行比较,当这些真实排放量被预先用于生成合成化石燃料的CO混合比测量值时,这些测量值将在反演中得到同化。目前,欧洲有17个站点使用2周的综合采样来测量CO,因此在像德国这样网络密集的国家,每月FFCO排放的不确定性降低幅度大于30%。在欧洲计划有43个CO测量站的情况下,英国,法国,意大利,东欧和巴尔干地区每月FFCO排放量的不确定性降低有所增加,具体取决于先前不确定性的配置。进一步增加台站数量或采样频率可改善高发射区的不确定性降低(高达40%至70%),但是即使假设覆盖了高发射区的密集观测网络,反演的性能在低发射区仍然受到限制。全欧洲。这项研究还表明,对于排放量的给定先验和“真实”估算,排放量反演的理论不确定性减少(以及由此产生的后验不确定性)和排放本身的后验估计对两种排放配置之间的选择高度敏感。从清单编制者的一般估计或对现有清单的计算得出的先前不确定性。特别是,当反演系统中的先验不确定性统计信息的配置与这些先验估计与真实估计之间的差异不匹配时,排放的后验估计将与真实情况大相径庭。这突显了难以针对该特定反演框架在模型数据失配中过滤目标信号的困难,为此需要强烈依赖于先前的不确定性表征,因此需要改进对当前排放清单中不确定性的估算具有实际数据的实际应用。我们将年排放量的后验不确定性应用于发现FFCO趋势的问题,这表明增加监测时间(例如20年以上)比通过增加站点减少年排放量的不确定性更有效。该OSSE中使用的大气传输模型的粗糙空间分辨率(通常用于天然CO通量全球反演的模型)会导致较大的表示误差(与传输模型无法捕获实际通量的空间变化有关)。子网格规模的混合比率),这是我们OSSE设置的主要限制,以提高欧洲地区FFCO排放监测的准确性。使用高分辨率的运输模型应该提高回收FFCO排放的潜力,这需要进行研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号